Chem. Ber. 109, 180 – 184 (1976)

Röntgenstrukturanalyse von Cyclooctaschwefeloxid

Peter Luger*), Hans Bradaczek*), Ralf Steudel**)* und Michael Rebsch**)

Institut für Kristallographie der Freien Universität Berlin, D-1000 Berlin 33, Takustraße 6*1, und Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, D-1000 Berlin 12, Straße des 17. Juni 135**)*

Eingegangen am 20. Mai 1975

Cyclooctaschwefeloxid, S_8O , kristallisiert in einem Molekülgitter der Raumgruppe $Pca2_1$ mit 4 Molekülen in der Elementarzelle und starken intermolekularen S...O-Wechselwirkungen. Gitterkonstanten: a = 13.197, b = 7.973, c = 8.096 Å. Die Moleküle befinden sich auf allgemeinen Positionen und bestehen aus kronenförmigen S_B-Ringen mit SS-Abständen zwischen 2.00 und 2.20 Å und axial gebundenen O-Atomen mit dem SO-Abstand 1.483 Å. Die ungefähre Molekülsymmetrie ist C_{r} .

Sulfur Oxygen Compounds, 27¹⁾

X-Ray Structure of Cyclooctasulfur Oxide

 S_8O crystallizes in a molecular lattice of space group $Pca2_1$ with 4 molecules on general positions in the unit cell with dimensions a = 13.197, b = 7.973, c = 8.096 Å. The molecules which exhibit a strong intermolecular $S \cdots O$ interaction consist of crown shaped S_8 rings with axially bonded O atoms. The SS distances vary between 2.00 and 2.20 Å, the SO distance is 1.483 Å. The approximate molecular symmetry is C_s .

 S_8O kann aus Thionylchlorid und Rohsulfan (H_2S_n) oder durch Oxidation von S_8 mit Trifluorperessigsäure dargestellt werden²⁻⁵⁾. Es kristallisiert aus CS₂ beim Abkühlen in gelben Nadeln, die sich bei 25°C langsam in SO2 und Schwefel zersetzen. Informationen über die Molekülstruktur wurden zuerst aus dem IR-Spektrum erhalten^{2,4)}, wonach das O-Atom Bestandteil einer Gruppe -S-SO-S- sein mußte. Verbindungen mit diesem Strukturelement sind seit etwa 10 Jahren bekannt⁵⁾, jedoch wurden bisher keine Strukturanalysen angefertigt. Die Röntgenstrukturanalyse von S_8O liefert daher erstmals strukturelle Informationen über Verbindungen dieser Art.

Bestimmung und Verfeinerung der Struktur

 S_8O kristallisiert in der rhombischen Raumgruppe $Pca2_1$ mit 4 Molekülen in der Elementarzelle. Folgende Kristalldaten wurden ermittelt:

¹⁾ 26. Mitteil.: R. Steudel und F. Rose, Z. Naturforsch., im Druck.

²⁾ R. Steudel und M. Rebsch, Angew. Chem. 84, 344 (1972); Angew. Chem., Int. Ed. Engl. 11, 302 (1972).

³⁾ R. Steudel und J. Latte, Angew. Chem. 86, 648 (1974); Angew. Chem., Int. Ed. Engl. 13, 603 (1974). ⁴⁾ R. Steudel und M. Rebsch, J. Mol. Spectrosc. 51, 334 (1974).

⁵⁾ Literaturübersicht siehe R. Steudel und M. Rebsch, Z. Anorg. Allg. Chem. 413, 252 (1975).

Gitterkonstanten: a = 13.197(3), b = 7.973(5), c = 8.096(3) Å, Zellvolumen: V = 852 Å³, Röntgendichte $\rho_x = 2.11$, gemessene Dichte $\rho_{exp} = 2.13$ g/cm³, linearer Absorptionskoeffizient $\mu = 19.2$ cm⁻¹ für Mo_{Ka}-Strahlung.

Mit einem automatischen Siemens-Einkristalldiffraktometer wurden 1008 Reflexe im Θ -Bereich 3–27° mit Zr-gefilterter Mo_{Ka}-Strahlung gemessen. 128 Reflexe, deren Intensität weniger als das Doppelte des statistischen Fehlers betrug, wurden als unbeobachtet eingestuft.

Da die Messung bei nur etwas reduzierter Raumtemperatur (10°C) ausgeführt wurde, konnte eine langsame Zersetzung der Kristalle nicht verhindert werden. Die Abnahme der Intensität wurde an zwei Referenzreflexen überprüft, und bei Intensitätsabfall auf 70% wurde der Kristall ausgewechselt. Insgesamt wurden drei Kristalle vermessen. Die verschiedenen Kristallgrößen wurden durch Skalierung der Intensitäten nach den Referenzreflexen berücksichtigt. Neben der üblichen Lorentz- und Polarisationskorrektur wurden die Daten auch für Absorption korrigiert.

Das Phasenproblem wurde nach der Tangensformel⁶⁾ gelöst, die Struktur wurde mit anisotropen Temperaturfaktoren für alle Atome nach der Methode der kleinsten Fehlerquadrate verfeinert. Sämtliche kristallographischen Berechnungen wurden mit dem Programmsystem XRAY 72⁷⁾ vorgenommen. Nach Konvergenz aller Parameter betrug der endgültige *R*-Wert $[R = (\sum ||F_k^o| - |F_k^c|])/\sum |F_k^o|]$ 5.0%.

Ergebnisse⁸⁾

Die Abbildungen 1 und 2 zeigen die Molekülgestalt und den Aufbau des Gitters. In Tab. 1 sind die Atomparameter zusammengestellt. Eine Liste der beobachteten und berechneten Strukturfaktoren kann auf Wunsch von den Verfassern erhalten werden. Sämtliche geometrische Daten (Abstände, Valenz- und Diederwinkel) sind in den Tabellen 2-5 angegeben.

Abb. 1. Struktur des Moleküls S₈O und Numerierung der Atome. Die Kernabstände (in Å) und Valenzwinkel (in Grad) sind Mittelwerte unter Annahme perfekter C_s-Symmetrie

Die S₈O-Moleküle enthalten gewellte S₈-Ringe mit je 4 Atomen in einer Ebene. Die Ausgleichsebene durch S1, S3, S5 und S7 ($\sigma = 0.12$ Å) bildet mit der Ausgleichsebene durch S2, S4, S6 und S8 ($\sigma = 0.08$ Å) einen Winkel von 2.5°. Das O-Atom ist in axialer Position an einem S-Atom gebunden. Die ungefähre Molekülsymmetrie ist danach C_s , obwohl einige äquivalente Abstände und vor allem Winkel um mehr als die Standardabweichung voneinander verschieden sind.

⁶⁾ J. Karle und H. Hauptman, Acta Crystallogr. 9, 635 (1956).

⁷⁾ Vorläufige Mitteil.: R. Steudel, P. Luger, H. Bradaczek und M. Rebsch, Angew. Chem. 85, 452 (1973); Angew. Chem., Int. Ed. Engl. 12, 423 (1973).

⁸⁾ X-RAY-System-Version of June 1972. Technical Report TR-192, University of Maryland 1972.

Tab. 1. Atomparameter nach Abschluß der Verfeinerungen (Standardabweichungen in Klammern). Die Koordinaten sind in Vielfachen von a, b und c gegeben, die U_{ij} beziehen sich auf den anisotropen Temperaturfaktor

$f_{\mathbf{z}} = \exp[-1]$	$2\pi^2 (U_{11}a^{*2}h^2)$	$+ U_{22}b^{*2}k^2 -$	$+ U_{33}c^{*2}l^{2}$	+ 2U ₁₂ a*b*hk +	· 2U ₁₃ a*c*hl +	⊦ 2U ₂₃ b*c*kl)]
-----------------------------	----------------------------	-----------------------	-----------------------	-----------------------------	-----------------------------	-----------------------------

Atom	×	у	z	10 ² ·U	10 ² · U22	10 ² · U ₃₃	10 ² ·U ₁₂	10 ² . U13	10 ² ·U23
S 1	0.2660 (2)	0.6887 (3)	0.3431 (-)	2.6 (1)	3.5 (1)	2.B(1)	-0.3 (1)	-0.4 (1)	0.3(1)
S 2	0.3561 (Z)	0.5208 (4)	0.5008 (6)	3.5 (1)	4.2 (2)	3.6 (2)	0.5 (1)	0.8 (1)	1.4 (1)
S 3	0,4777 (Z)	D.4751 (3)	0.3602 (5)	3.7 (1)	3.0(1)	3,6 (2)	0.3(1)	0.6 (1)	-0.4 (1)
S 4	0.5904 (2)	0.6411 (4)	0.4257 (6)	3.1 (1)	4.4 (2)	3.8 (Z)	0.3(1)	-0.5 (1)	0.1 (1)
55	0.5912 (Z)	0.8224 (4)	0. 2466 (6)	3.9 (Z)	3.6 (1)	3.5 (2)	-0.2 (1)	1,1(1)	-0.3 (1)
56	0.5300 (Z)	1.0328 (3)	0.350Z (6)	3,3(1)	3.4 (1)	3.9 (Z)	-0,6(1)	0.2 (1)	-0.8 (1)
S 7	0.3793 (2)	1.0460 (4)	0. 2791 (5)	3,5(1)	3.5 (1)	3.5 (2)	-0.4 (1)	-0.3 (1)	-0.6 (1)
S 8	0.2971 (2)	0.9345 (4)	0. 4559 (5)	3, 3 (1)	3,4 (1)	3.2 (1)	-0.0(1)	0.5 (1)	-0.3 (1)
01	0.3166 (7)	0, 6895 (12)	0, 1796 (11)	5.0 (5)	5,9(6)	2.3 (4)	-0.5 (5)	0.8 (4)	-0.3 (4)

Tab. 2. Intramolekulare Abstände (in Å) zwischen nächsten und übernächsten Nachbarn (Standardabweichungen in Klammern)

_								
S 1	-	01	1,483 (9)		S 4	-	S 5	2.048 (6)
		S 2	2.199 (4)	1			S 6	3, 281 (4)
		S 8	2.201 (4)					
		S 7	3, 259 (4)		55	-	S 6	2.042 (5)
		53	3,275 (4)				S 7	3.327 (4)
5 2		S 3	2.001 (5)	1	S 6	_	S 7	2,073 (4)
		S 4	3.295 (4)				58	3.285 (4)
								(,
5 3	-	S 4	Z. 061 (4)		S 7	-	58	2.004 (5)
		\$ 5	3.280 (4)	<u> </u>				
				1	01	-	S 2	2.974 (10)
							S 8	2.981 (10)
							53	3.095 (10)
				1			57	3.068 (10)
				1				

Atom 1	Atom 2	Abstand in X	Symmetricoperation für Atom 2
53	5 6	3.594 (4)	¥; -1+y; z
S 5	S 8	3.387 (5)	1-x ; 2-y ; -1/2+z
S 2	S 5	3.454 (5)	1-x;1-y;1/2+z
54	01	3.561 (10)	I-x; I-y; 1/2+z
S I	01	2.935 (9)	1/2-x; y;1/2+z
S 2	01	3,017 (10)	1/2-x; y; 1/2+z
SB	01	3.058 (10)	1/2-x; y; 1/2+z
51	5 Z	3.474 (4)	1/2-x; y;-1/2+=
51	54	3.568 (4)	-1/2+x;1-y;z
	L		

1 229/76 Tel 2 m3

Tab. 4. Valenzwinkel in Grad

Tab. 5. Diederwinkel im S₈-Ring von S₈O in Grad. Die Vorzeichen entsprechen der Konvention von Klyne und Prelog⁹

01-51-52 106.1 (4)	\$ 3 - \$ 4 - \$ 5	105.9 (2)	51-52 53-54	95.0	55-5657-58	93, Z
01-51-58 106.4(4)	54-55-56	106.7 (3)	\$ 2 - 5 3 5 4 - 5 5	-102.1	56=5758-51	-101.7
SZ-S1-58 101.6(1)	S5-56-S7	107.9 (2)	53-54 55-56	107.0	\$ 7 - \$ 8 \$ 1 - 8 2	111.5
SI-SZ-S3 102.4 (2)	56-57-58	107.4 (2)	54-55 56-57	- 98.8	\$ 8 - 5 1 \$ 2 - 5 3	-102.4
5 2 - 5 3 - 5 4 108.4 (2)	\$7-58-51	101.5 (2)	L		L	

C 225/75.14 4 6.5

Die in Abb. 2 erkennbare intermolekulare Wechselwirkung von je zwei der vier Moleküle einer Elementarzelle äußert sich in einem kurzen intermolekularen SO-Abstand (vgl. Tab. 3). Die SO-Gruppen aller miteinander in Wechselwirkung stehenden Moleküle liegen praktisch in einer Ebene (Diederwinkel $S1-O1\cdots S1-O1$: -4.7° und $O1\cdots S1-O1\cdots S1$: -176.1°). Die Valenzwinkel in den von den Thionylgruppen gebildeten Zick-Zack-Ketten betragen $O1-S1\cdots O1$: $175.0(4)^{\circ}$ und $S1-O1\cdots S1$: $131.4(5)^{\circ}$.

⁹⁾ P. Luger, FORTRAN-Programm TORSIG zur Berechnung von Torsionswinkeln einschließlich Vorzeichen nach der Konvention von Klyne und Prelog (Experientia 16, 521 (1960)), 1973, unveröffentl.

Abb. 2. Aufbau des Kristallgitters von S₈O. Eine Elementarzelle enthält vier Moleküle

Diskussion

Obwohl der S₈-Ring im S₈O dem des rhombischen Schwefels darin ähnelt, daß die Atome abwechselnd in zwei zueinander parallelen Ebenen liegen, sind die SS-Abstände im S₈O im Gegensatz zum S₈ sehr stark differenziert, und zwar stärker als in irgendeinem anderen Molekül mit kumulierten SS-Bindungen. Die maximale Abstandsdifferenz beträgt 10%. Unter dem Einfluß des O-Atoms werden die unmittelbar benachbarten SS-Bindungen vom Normalwert 2.06 Å im S₈¹⁰⁾ auf 2.20 Å verlängert. Einen ähnlichen Effekt beobachtet man auch bei anderen Verbindungen, die eine SS-Bindung benachbart zu einer SO-Bindung enthalten¹¹⁾, etwa beim S₂O₄²⁻ ($d_{ss} = 2.39$ Å), S₂O₅²⁻ (2.21 Å), S₂O₆²⁻ (2.15 Å), bei Sulfanoxiden R – S – SO₂ – R (2.05 – 2.10 Å) sowie bei Polythionationen S_nO₆²⁻ (2.11 – 2.12 Å). Als Ursache dieser Bindungsschwächung kann man bei all diesen Systemen eine Delokalisierung freier Elektronenpaare des oder der O-Atome in ein Molekülorbital, das bezüglich der SS-Bindung antibindend ist, annehmen (Grenzstruktur III):

Zwar ist eine detaillierte MO-Betrachtung bisher nur beim $S_2O_4^{2-}$ angestellt worden ^{12, 13}, jedoch konnte die durch den diskutierten Effekt verursachte Verstärkung der SO-Bindung sowohl beim SOCl₂ als auch beim Strukturelement $-S_3O$ - infrarotspek-

¹⁰⁾ A. Caron und J. Donohue, Acta Crystallogr. 18, 562 (1965).

¹¹⁾ Literaturübersicht bei R. Steudel, Angew. Chem. 87, 683 (1975).

¹²⁾ R. D. Brown und R. D. Harcourt, Aust. J. Chem. 16, 737 (1963).

¹³⁾ R. D. Harcourt, Theor. Chim. Acta 3, 194 (1965).

troskopisch nachgewiesen werden¹⁴). Auch beim SOCl₂ ist der SCl-Abstand (2.08 Å) größer als beim SCl₂ (2.01 Å)¹⁵, und die SO-Bindung ist entsprechend verstärkt¹⁴).

Die Bindungen zwischen den Atompaaren S2-S3 und S7-S8 im S₈O sind kürzer als einer Einfachbindung entspricht. Dafür ist bereits anläßlich der Normalkoordinatenanalyse¹⁶ die starke Bindungswechselwirkung verantwortlich gemacht worden, die durch die ungewöhnlich große Kraftkonstante $f_{rr} = 0.6 \text{ mdyn/Å}$ beschrieben wird und die eine charakteristische Eigenschaft kumulierter SS-Bindungen darstellt. Diese Wechselwirkung führt zu dem für Schwefelketten typischen Alternieren der Kernabstände. Auch die Valenzund Torsionswinkel sind im S₈-Ring von S₈O sehr viel stärker differenziert als im S₈, jedoch stimmen die Mittelwerte nahezu überein (S₈O: $\bar{\alpha} = 105.2^{\circ}, \bar{\tau} = 101.4^{\circ}, S_8^{-10}$: $\alpha = 108.0^{\circ}, \tau = 98.8^{\circ}$).

Das O-Atom von S₈O befindet sich in axialer Position. Diese Stellung ist auch bei einigen cyclischen Bis-Organylsulfoxiden¹⁷ gegenüber der äquatorialen Lage bevorzugt. Beim trimeren Schwefeltrioxid S₃O₉¹⁸⁾, das einen S₃O₃-Ring mit zwei exo-ständigen O-Atomen an jedem S-Atom enthält, sind die axialen SO-Bindungen mit 1.37 Å wesentlich stärker als die äquatorialen (1.43 Å). Obwohl es danach wahrscheinlich ist, daß $S_{R}O$ in der nachgewiesenen Form stabiler ist als mit äquatorialem O-Atom, ist die Frage zu prüfen, ob das axiale Isomere nicht durch die intermolekulare S...O-Wechselwirkung im Kristall stabilisiert wird. In diesem Falle sollte beim Lösen in CS₂ Isomerisierung eintreten. Nun beobachtet man dabei tatsächlich eine starke Verschiebung der SO-Valenzschwingung von 1085 im festen nach 1130 cm⁻¹ im gelösten Zustand^{2,4)}, während Bis-Organyltrisulfanoxide R_2S_3O eine wesentlich kleinere Verschiebung aufweisen¹⁴). Diesen Befund könnte man in Analogie zu Beobachtungen an substituierten Trimethylsulfiten¹⁹⁾, bei denen das axiale Isomere eine um etwa 40 cm⁻¹ niedrigere SO-Valenzschwingung aufweist als das äquatoriale, mit einer Isomerisierung deuten. Wahrscheinlicher ist jedoch, $da \beta die$ intermolekulare S \cdots O-Wechselwirkung für die Wellenzahldifferenz verantwortlich ist, zumal die Aufspaltung sowohl der SO-Valenz- als auch der beiden SO-Deformationsschwingungen im festen S₈O auf die Stärke dieser Wechselwirkung hinweisen. Daher besitzt das S₈O-Molekül wahrscheinlich auch in Lösung die im Kristall nachgewiesene Molekülstruktur. Eine Entscheidung über die Struktur in Lösung kann eventuell durch Messung des Dipolmomentes erreicht werden, da CNDO/2-Rechnungen gezeigt haben²⁰), daß das axiale Isomere ein wesentlich kleineres Dipolmoment (0.6 D) besitzt als das äquatoriale (1.5 D). Diese Rechnungen ergaben für das axiale Isomere eine etwas geringere Energie als für die alternative Konformation.

Wir danken dem Verband der Chemischen Industrie und dem Senator für Wirtschaft des Landes Berlin für die finanzielle Förderung unserer Untersuchungen.

184

¹⁴⁾ R. Steudel, Z. Naturforsch. 25 B, 156 (1970).

¹⁵⁾ Literaturübersicht bei P. Laur in Sulfur in Organic and Inorganic Chemistry (Herausg. A. Senning), Bd. 3, S. 178, M. Dekker, New York 1972.

¹⁶⁾ *R. Steudel*, Spectrochim. Acta 31 A, 1065 (1975). ¹⁷⁾ Siehe I. c. ¹⁵⁾, S. 201 – 209.

¹⁸⁾ W. S. McDonald und D. W. J. Cruickshank, Acta Crystallogr. 22, 48 (1967).

¹⁹⁾ H. F. van Woerden und E. Havinga, Rec. Trav. Chim. Pays-Bas 86, 341 (1967).

²⁰⁾ Unveröffentl. Ergebnisse von H. Bock und B. Solouki, 1975.